

DC/DC CONVERTER 5-6W, DIP-Package

FEATURES

- Efficiency up to 86%
- 1500VDC Isolation
- MTBF > 1,000,000 Hours
- 4:1 Wide Input Range
- CSA60950-1 Safety Approval
- Complies with EN55022 Class A
- Temperature Performance -25°C to +85°C
- Industry Standard Pinout
- UL 94V-0 Package Material
- Internal SMD Construction
- ► 3 Years Product Warranty

PRODUCT OVERVIEW

Minmax's MIW4000-Series Power modules are low-profile dc-dc converters that operate over input voltage ranges of 9-36VDC and 18-75VDC which provide precisely regulated output voltages of 3.3V, 5V, 12V, 15V, ±5V, ±12V and ±15VDC.

The -25°C to +85°C operating temperature range makes it ideal for data communication equipments, mobile battery driven equipments, distributed power systems, telecommunication equipments, mixed analog/digital subsystems, process/machine control equipments, computer peripheral systems and industrial robot systems.

The modules have a maximum power rating of 6W and a typical full-load efficiency of 86%, continuous short circuit, 50mA output ripple, EN55022 Class A conducted noise compliance minimize design-in time, cost and eliminate the need for external filtering.

Model Selection Guide

Model	Input	Output	Ou	tput	Input Current		Reflected	Max. capacitive	Efficiency
Number	Voltage	Voltage		rent	input o	anone	Ripple	Load	(typ.)
Number	(Range)	voltage	Max.	Min.	@Max. Load	@No Load	Current		@Max. Load
	VDC	VDC	mA	mA	mA(typ.)	mA(typ.)	mA(typ.)	μF	%
MIW4021		3.3	1200	120	212			3000	78
MIW4022		5	1000	100	257				81
MIW4023		12	500	50	291				86
MIW4024	24	15	400	40	294	20 10	10		85
MIW4025	(9 ~ 36)	±5	±500	±50	257			680#	81
MIW4026		±12	±250	±25	291				86
MIW4027		±15	±200	±20	294				85
MIW4031		3.3	1200	120	106			3000 10 680#	78
MIW4032		5	1000	100	129				81
MIW4033	40	12	500	50	145	10	10		86
MIW4034	48 (18 ~ 75)	15	400	40	147				85
MIW4035	(10 70)	±5	±500	±50	123				81
MIW4036		±12	±250	±25	145				86
MIW4037		±15	±200	±20	147				85

For each output

Input Specifications Parameter Min Max. Unit Model Typ. 24V Input Models -0.7 50 ----Input Surge Voltage (1 sec. max.) -0.7 100 48V Input Models ----24V Input Models 7 9 8 Start-Up Threshold Voltage VDC 48V Input Models 14 16 18 24V Input Models 8.5 ------Under Voltage Shutdown 48V Input Models 16 Reverse Polarity Input Current 0.5 А 2500 mW Short Circuit Input Power --------All Models Internal Power Dissipation 2500 mW ------Conducted EMI Compliance to EN 55022, class A and FCC part 15, class A

E-mail:sales@minmax.com.tw Tel:886-6-2923150

2012/08/06 REV:1 Page 1 of 4

www.minmax.com.tw

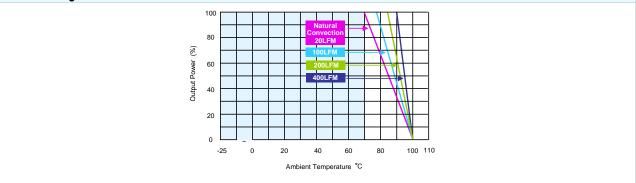
DC/DC CONVERTER 5-6W, DIP-Package

Output Specifications

Parameter	Conditions	Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy	At 50% Load and Nominal Vin			±1.0	%Vom.
Output Voltage Balance	Dual Output, Balanced Loads		±0.5	±2.0	%
Line Regulation	Vin=Min. to Max.		±0.2	±0.5	%
Load Regulation	lo=10% to 100%		±0.3	±1.0	%
Ripple & Noise (20MHz)			50	75	mV _{P-P}
Transient Recovery Time			250	500	µsec
Transient Response Deviation	25% Load Step Change		±3		%
Temperature Coefficient			±0.01	±0.02	%/°C
Over Load Protection	Foldback	120	250	350	%
Short Circuit Protection	Continuous				

General Specifications

•					
Parameter	Conditions	Min.	Тур.	Max.	Unit
I/O Isolation Voltage (rated)	60 Seconds	1500			VDC
I/O Isolation Resistance	500 VDC	1000			MΩ
I/O Isolation Capacitance	100KHz, 1V		350	550	pF
Switching Frequency			340		KHz
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	1,000,000			Hours
Safety Approvals	UL/cUL 60950-1 recognition(CSA certificate), IEC/EN 60950-1				


Input Fuse

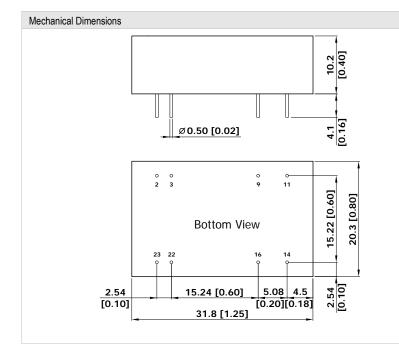
24V Input Models	48V Input Models			
1500mA Slow-Blow Type	750mA Slow-Blow Type			

Environmental Specifications

Parameter	Conditions	Min.	Max.	Unit	
Operating Ambient Temperature Range (See Power Derating Curve)	Natural Convection	-25	+85	C°	
Case Temperature			+90	C°	
Storage Temperature Range		-50	+125	C°	
Humidity (non condensing)			95	% rel. H	
Cooling		Free-Air conv	vection		
Lead Temperature (1.5mm from case for 10Sec.)			260	C°	

Power Derating Curve

E-mail:sales@minmax.com.tw Tel:886-6-2923150



DC/DC CONVERTER 5-6W, DIP-Package

Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 50% to 100%
- 3 Ripple & Noise measurement bandwidth is 0-20MHz.
- 4 These power converters require a minimum output loading to maintain specified regulation, operation under no-load conditions will not damage these modules; however they may not meet all specifications listed.
- 5 All DC/DC converters should be externally fused at the front end for protection.
- 6 Other input and output voltage may be available, please contact factory.
- 7 That "natural convection" is about 20LFM but is not equal to still air (0 LFM).
- 8 Specifications are subject to change without notice.

Package Specifications

Pin Connections				
Pin	Single Output	Dual Output		
2	-Vin	-Vin		
3	-Vin	-Vin		
9	No Pin	Common		
11	NC	-Vout		
14	+Vout	+Vout		
16	-Vout	Common		
22	+Vin	+Vin		
23	+Vin	+Vin		

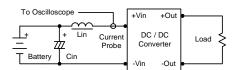
NC: No Connection

All dimensions in mm (inches)

- Tolerance: X.X±0.25 (X.XX±0.01)
 - X.XX±0.13 (X.XXX±0.005)
- ▶ Pin diameter Ø 0.5 ±0.05 (0.02±0.002)

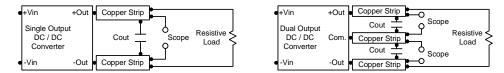
Physical Characteristics Case Size : 31.8x20.3x10.2mm (1.25x0.80x0.40 inches) Case Material : Metal With Non-Conductive Baseplate Pin Material : Copper Alloy with Gold Plate Over Nickel Subplate Weight : 17.3g

E-mail:sales@minmax.com.tw Tel:886-6-2923150



DC/DC CONVERTER 5-6W, DIP-Package

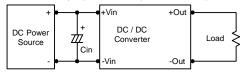
Test Setup


Input Reflected-Ripple Current Test Setup

Input reflected-ripple current is measured with a inductor Lin (4.7μH) and Cin (220μF, ESR < 1.0Ω at 100 KHz) to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 KHz.

Peak-to-Peak Output Noise Measurement Test

Use a Cout 0.47µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter.


Technical Notes

Overcurrent Protection

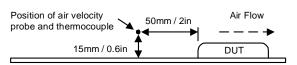
To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 KHz) capacitor of a 4.7μ F for the 24V input devices and a 2.2μ F for the 48V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3µF capacitors at the output.



Maximum Capacitive Load

The MIW4000 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. For optimum performance we recommend 680µF maximum capacitive load for dual outputs and 3000µF capacitive load for single outputs. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 90°C. The derating curves are determined from measurements obtained in a test setup.

